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X., = conductivity of water. 
11, = density of ice. 
/ I ,  = density of water. 
c; = specific heat of ice. 
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temperature and emits long waves. These are strongly ab- 
sorbed according to the prevailing physical conditions, as the 
relative amounts of dry air and aqueous vapor, coefficients of 
absorption for different wave lengths, ancl so on. Convection 
currents also enter into the result, and, indeed, the complex 
function here displayed requires much careful examination 
before further conclusions can be stated. The temperatures 
diminish generally with the height after leaving the 400-meter 
level, but the diurnal period gives a maximum of cold at  mid- 
day and a minimum about midnight. In the summer months, 
on the other hand-June, July, A u g u s t t h e  inverted tempera- 
ture distribution does not exist relatively to the surface, but 
the curves are all of the same general type, with a inaxiniuni 
temperature in the late afternoon, and niiniiiiuin in the early 
morning. I n  the transition months-April, May, Septeniber, 
October, November-the diurnal teinperature curve has two 
maxima, 8 a. m. and 8 p. m., and two minima, 2 a. m. ancl 2 p. 111. 

The process of transition can be followed in the several levels 
from month to month, and it is a very interesting phenomenon. 

The second important feature of these curves is the builcl- 
ing of a semidiurnal period in the temperature a t  the eleva- 
tion 400 to 600 meters, in all months in the year, with the 
maxima a t  8 to 9 a. m. and 9 to 10 p. m. They are seen very 
distinctly represented in May and September, where they are 
formed up to the very top of the diurnal disturbance. The 
single diurnal period at  the surface is replaced by a dollble 
diurnal wave at  400 meters, and this appears quite plainly in 
every month except July, where i t  probably is nearly extiuct. 
In  the higher levels, above 800 meters, there is a tendency for 
the double periods to contract the masima from the 9 a. in., 
9 p. m. hours nearer toward midclay, and form two crests or a 
single crest near midday, especially in the winter months. It 
will be shown in the nest paper of this series that those super- 
posed temperature wares, having their masiina disposed as 
just explained, are competent to produce the diurnal variation 
of the barometric pressure in the single, double, and triple 
components, into which the observed pressure at  the surfitce 
is usually resolved by the Fourier Series of Harmonics. Mr. 
Clayton has obtained similar curves of temperature a t  500, 
1000, 1500 meters, as shown on fig. 5 of his paper on “The 
diurnal and annual periods of teinperature.”-Annual Harvarcl 
College Observatory, Vol. LVIII, Part I, 1904, though they are 
composites of the several curves really belonging to different 
months of the year. It will be seen from our curves that mean 
annual values computed froin observations taken in all parts 
of the year are correct only for certain limited inter\-nls, in 
which the varying temperatures pass through such special 
values. Similarly, all cliscuesion of data depending upon mean 
values made up in this way can have only a limited application 
in deducing daily free air temperatures throughout the year. 
This disclosure of the fact that the temperature curves dider 
according to the elevation from the one observed a t  the sur- 
face opens up the possibility of esplaning not only the serni- 
diurnal and triple diurnal barometric waves, but also the 
movements of the ions in the atmosphere in their relation to 
the electric potential gradient, the coefficient of neutraliza- 
tion and number of ions, in the connection with other meteor- 
ological phenomena, and the variations of the diurnal mag- 
netic field in all latitudes of the earth. These researches will 
be explained in the other papers of the series. 

MATHEMATICAL THEORY OF ICE FORMATION. 
By 8. TETYU TAMLlR4.  

It is well known to the mathematical physicist that the first 
to  give the most complete mathematical theory of heat 
conduction was Joseph Fourier, who belonged to the constel- 
lation of the most brilliant men of science in the time of 
Napoleon Bonaparte. The entire subject of heat conduction 
was created by Fourier’s ‘‘ Thhorie Anslytiqne de la Chalenr ”, 

u I p  = x.1 ~ = diffusivity of ice. I 
c, (’1 x., 

0 2 = ~ = didusivity of water. I 
, c, /J2 I 

Then the following equations hold: 
4P, r3Vl . 

a H 2  N 2  P, 

= 0,’ r32 in ice, or for 0 < x <t. iJt 

r3t = u2 i ~ . r g  in water, or for E < .r. (1)  

____ ~~~ __ ~~ ~~~~~ ~~ ~ 

Also in  Wien. Ahacl. 
The title, 6 b  Vordringen des Frosts.” 

Sitz. ber. Bd. 98, Abth, I1 a. 
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The temperature of the boundary surface of ice and water 
(at X = E )  will be always equal to 0' C, and there will be new 
ice formed continually. I f  E is added by d~ in the time dl, 
the quantity of heat set free thereby is 

I pI do 
where 1 represents the latent heat of fusion of ice and p, its 
density. The quantity of heat that flows outward through the 
unit area of the lowest sheet of ice is given by 

and at 'the same time the quantity of heat that flows to the 
boundary surface upward from the water is 

2 3 %  

Henoe we obtain the following double surface condition: If the initial temperature be constant and equal to Po, or 

the expression (12) is reduced to 
0 = f ( x )  = o0 for t = 0, (13) 

" -P 

2lzvy 211 t- 
-__. 

8 = [!-e d,3-* 

or, if we put 
1-2 p=-- or I = a+ 2a 1\/ t 13, 

(11) may be reduced to the form 

and the other conditions are 
el=em for x=O (3) 
@,=6;=0 for X=E (4) 

also "=Oi forn.r=d I (6 )  
where c> E 

Lastly, if t=O, 8, for O<Z<E and for c<:/:<S may be con- 
sidered as functions of 2. 

Now our task will be to solve the two principal equations 
( l ) ,  subjected to the conditions (2), (3), (a), ( 6 ) ;  but their gen- 
eral solution has not yet been worked out. The condition (2) 
contains some unknown function E, which is not linear, and 
we have not been able to build up  a general solution by sum- 
ming up a number of particular solutions. Franz Neumann, 
however, gave in his lectures' a t  Konigsberg a solution of our 
equations under the conditions (2), (3), (4) and 

instead 'of (5). 

equation for heat nondition, 

8,=fli for x= (6)  

To begin with, let us work out the general solution of the and for the negative value of x, 

(7) 

e=O for x=O ( 8 )  

ae  a) 
- =aa -a at ax 

under the conditions 

O=f(z) fort=O. ( 9 )  
It is easily seen that 

e=+ a' sin ax [ a  being wholly unrestricted I 
satisfies the equation (7) and the conditions (8) and (9). There- 
fore it is one of our particular solutions. From this we can 
build up by Fouriers' theorem' the following expression:- 

f (+:$" da *fw f ( I )  sin ax sin a I d  R 

and therefore we have 
0 0 

0 0 

as our required so1ution;for e=O, when x=O 

e=f(x)=2-lm x d a s "  f (A) sinazsinaRdI,whent=O. 
0 0 

....... . . . .  

8 Riemann-Weber, Pnrtielle Differentialgleichungen; Bd. 11, 3 49. 

E. Byerly's Int. W., Art. 94-(2). 
Riemann-Weber, Bd. I, 3 17. Byerly's Fourier's Series, Art. 38. 

I f  we suppose that 

then for x = 0, 
t ) (O)=  0, 

for x =  m, 

0 

whence 
@(-r) = - H( ;E ). 

As 
. .  

e -P = I - - + " - $ + . . .  $1 I 

l !  4! 

[ e d p  4;. 
2 0 +¶ L3 (x) = - 

0 

. . . . . .  
x 

0 

= (&) 
or when expanded, 

aByerly'e Fourier's Serles, Art. 50. 

7 Weber-Riemann, Bd. I, 5. 86. 

Weber-Riemann, Bd. 11, pp. 36 
aud 37. 
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V=O 

Thus me can easily see that 1) ( 2a>I ____ ) satisfies our princi- 

pal equations (1). If A,, B,, A,, B,, are constant, 

f12 = 9, + B, 8 ~- (a& ) 
must also satisfy our equations. 

6, (&)=o for :r=o 

becomes constant also, i f  I is proportional to ,/i 

or if  E = b ,/F when 3: = E .  

we must have 

(16) 
I n  order that the solutions (17) satisfy (2 ) ,  ( 3 ) ,  (a), and (6), 

A,=Os 

9, + B,= Pi. 

From (19) we have 

and water is everywhere and always equal to zero. Our equa- 
tions and boundary conditions (l), (2 ) ,  (3), (4), ( 5 )  then 
become 

(23) 
( 2 4 )  

0,=--Hs for r=o  
H,=O for X = E  

As 0, is a function of the time and place, 

when J’=c‘, O=O, whence 

It is easily seen that if E=E--.?:, then . ,  the expression* 

satisfies (21) and the condition H,=O for x=S. 
Let u s  diEerentiste this expression with respect to z and 

then we obtain 

whence 

c 1 d;’ 1 d,fZ --- 
:I‘ 8.1; l !  n’dt 3 ! a 2 d f P  . ’ ‘  ’ ‘  

When . r=z ,  this satisfies (24). 
Since PI=-OB for .r=O, it follows that (19) 

CWs - 1 c I E 2  1 d f ‘  
- + . . . . . .  (27) 

I f  the thickness of the layer of ice 5 is given as a function 
of time t ,  then Os may be easily determined; bnt, i f  0. is given, 
i t  is in general cli6cult to cleterlnine E. 

I 2! at + i! a‘ clt’ 

From this last transcendental equation we may be able to 

find the constant b or L-. Since E= b , / z  it follows that the 

thickness of ice increases in direct proportion to the square 
root of the time, and also it follows that the formation of ice 
is slow with the increase of depth. 

If b is found, A,, A,, B,, and B,, which appear in (17), may 
be easily found from (19). 

I f  we take e, positive and 0, negative, the formulae represent 
the laws of fusion of ice. 

It must not, however, be forgotten that the whole analysis, 
however elegant it may be, has been based upon many objec- 
tionable assumptions. In  the first place, the change of the 
density of water when frozen into ice was entirely neglected 
in the analysis. The assumptions 

@,=es (constant) for a=O 
H,=O, (constant) for I= 

dt 

are another objectionable feature. Lastly, it must be remem- 
bered that the solutions are merely particular solutions of our 
equations. 

Julius Stefan simplified the problem by the assumption that 
the temperature of water below the boundary surface of ice 

8-3 

Now, if me supllose that the temperature flB of the upper 
surface is constant, the right side of the expression (27)  must 
be constant. This condition is fulfilled, if the thickness of 
ice increases in proportion to the square root of the time. or 

where p is constant. 
(28) E= = 2pa a= t 

Then from (27 )  we have 

For the first approximation 

whence 

For the second approximation 

- 
3 

(32) 

The above formulw may be obtained by the following 

The expression 
8 Stefan’s “Ueber die Theorie der Eisbildung.” 

method : 

~ 

Wied Ann. Bd. SVII 
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- P  .- 

(/I = A l ' ' e - P d p  
z 

2alt- 
in which A and p are constants, satisfies the equation (21). 
If x e: 0, el will take a constant value. 

n 

(34)  

which L the expression for the temperature of the upper 
surface. 

From (33) 
:c P 

2 a 4 / t -  4% a 
8, = 0, when - - -- 
el = 0, when x = E, 

E P 
2 a 4 F  - J T  

or, as expressed in (as), E' = 2pqx2t. (28)  

and by (24) 

whence ---- 

By (26) we can determine the value of p. Let us differ- 
entiate el in (33) with respect to x and t. Then we have 

% = A ,  -25 4a%2Tc. x 

Introducing these expressions into (26), we obtain 

With (34) 
n 

(33) 

(35)  

which serves for the determination of p. 
we reach the formula (29) 

By expanding (35), 

snd, as before shown, - 

etc., etc. 

(21) and (26)  is 

AU these formula hold only when e, is constant. 
Another particular .solution which may be made to satisfy 

(36) 

where A, a, and q are constants. 
for e, in ( 2 l ) ,  we find that a= a' q'. 
Now 

Substituting this expression 

Bl=O, for at-qx=O 
B1=O, for x=e 

whence 
at-qo=O 

(37) 
The expression shows that the thickness of ice may increase 

From (25) 
- c a' q' A' - cA' I d - - - - .  

a' A U I  

in direct proportion with the time. 

Hence between A and a there exids the followingrelation: 

(38) 
A c  

I 
a= - . 

For x=O, we obtain from (36) 

(39) =at+--+ - + . . . . . .  c A ' f  c ' P P  
A 21 A' 3! 

Each of these formulas, however, contains some unknown con- 
stants a or  A. 

I f  we introduce the expression (37) into (27), we reach 
another espression, - 

4 f  ai? 
A 2! 3! q ' t + 4  +Q-+ . . . . . .  = 8 ' - 1 .  - (40) 

I f  E is very small, the formula (27)  may be reduced to the 
form, 

a d€' 
A - a d  dt 

"'?- - - 
whence 

e. may be variable, and if it is a function of t, 

If  we assume that the temperature of ice increases uniformly 

from its upper surface downward, the quantity of heat dt 
flows upward through the ice in the time at. I n  the same 
time, a layer of ice whose thickness is do is formed and the 
quantity of heat Ap,do is. set free; therefore we have 

from which 

which was already obtained in ( 41 ). 
I f  e, is constant, 

E =  rF- (42) 

It is to be regretted that the analysis, so far, is very incom- 
plete and unsatisfactory. I n  fact, some formulas have been 
deduced upon the assumption that the temperature of the 
upper surface of ice fl, is constant, and others upon the assump- 
tion that the thickness of ice E is very small or  that the tem- 
perature gradient in ice is constant. Moreover, the whole 
operation is based upon the assumptions that the temperature 
of water is everywhere and always equal to zero, and that the 
heat flows upward only, and the latent heat of fusion of ice 
never warms up the water nest the ice. The change in density, 
when water freezes into ice, was also neglected. 

I f  it be satisfactorily completed, however, the theory of ice 
formation may be applicable to a few interesting problems. 
When a lake or the polar seas are covered with a thin uniform 
layer of ice, the ice grows gradually thicker if  the temperature 
of the air be below the freezing point. This is mused by the 
passage of heat through ice from the water immediately below 
it. Thus the layer of water next the ice freezes, setting free 
the latent heat of fusion of ice. As the temperature is the 
same throughout any horizontal layer, the transference of heat 
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is vertically upward, or perpendicular to such layers. Stefan 
applied some of his formulas to the phenomena of ice formation 
in the polar seas, notably in the Gulf of Boothia, Assistance 
Bay, Port Bowen, Walker Bay, Camden Bay, and others, and 

computed the value of at ,  which i s 3  to be 0,0012 (C. G. S.) 

which value lies between the value of Neumann (0.0057) and 
that of Forbes (0.00223). This is rather a remarkable result. 
But Stefan’s application must be criticized because he took 
simply for the surface condition @=Ha for z= 0. e, is primarily 
the temperature of the outer surface of ice, and not that of 
the atmosphere itself, as Stefan assumed. Hence our surface 

PlCIJ 

condition must be = c (O,-@*)  when cis the emis- 

sivitypf ice and 0. may be the temperature of the atmosphere, 
if we assume that heat is radiated from ice surface toward 
the atmosphere only ancl not toward space. The fact is, how- 
ever, that the influence of the temperature of the atmosphere 
on ice formation is seeniingly small. The natives of Bengal, 
in India, make ice in fields freely exposed to the sky. Small 
excavations are made in the black loam soil, at  the bottom of 
which are spread small sheaves of rice straw, and upon the top 
of this is placed light, loose straw to the depth of one and 
one-half feet. Upon this shallow and porous earthen dishes 
filled with water are exposed during clear nights. Ice is pro- 
quced in large quantities when the air temperature is 16” to 
20° F. above the freezing point. This shows that ice forma- 
tion is in great part due to radiation to space. Hence 0, must 
be the so-called sky temperature, which represents both the 
siderial and the atmospheric temperature. 

I f  the temperature of the air is higher than that of ice, 
the ice begins to melt gradually, ancl a t  the same time a part 
of the heat flows into the ice downward. This is equiva- 

lent to saying that cold flows outward from the interior 
of ice and retards the melting of the surface of ice by the 
warmer air. Therefore, the principles of ice formation may 
be applicable to this problem, if we give the formulas the 
opposite signs. 

The penetration of frost into the moist soil is another inter- 
esting problem in the application of the theory of ice forma- 
tion. I f  the temperature of the earth’s surface is cooled below 
the freezing point, the frost is formed over the earth’s surface 
and penetrates gradually deeper into the earth, which process 
is exactly similar to the formation of ice in a lake or in the 
polar seas. 

All these problems are examples of heat conduction in one 
dimension, which i R  the simplest of all cases. If we suppose 
that a vessel filled with water is surrounded by brine, the layer 
of water nearest to the brine begins to freeze. Heat flows 
outward from the water and the layer of ice will grow toward 
the center of the vessel. If the vessel be a parallelopiped, our 
subject becomes the diEcult problem of heat conduction in a 
parallelopipecl of ice. If the vessel be a cylinder the problem 
becomes the most difficult, and may possibly require the assist- 
ance of the theory of Bessel’s functions, if, indeed, the problem 
be soluble at  all. It is in general very difficult to determine 
the variation of temperature in a limited body. 

Prof. Cleveland Abbe asked me sometime ago if I could 
solve the problem of ice formation more completely, and if I 
would also prepare a paper to point out to American meteor- 
ologists how much on the subject has been clone by mathe- 
matical and experimental physicists, and what ought to be 
clone by meteorologists. Now I communicate this preliminary 
paper to the WEATHER REVIEW, with the hope that the problem 
may interest some of the theoretical as well as practical mete- 
orologists, and also with the expectation that I may offer in the 
near future some more general solution of the problem than 
those above given. 

NOTES AND EXTRACTS. 
TBE FOURTH INTERNATIONAL CONFERENCE ON 

AERIAL RESEARCH. 

I n  the Meteorologische Zeitschrift for January Dr. A. De 
Quervain gives a general report on the proceedings of the 
fourth conference of the international committee for scientific 
ballooning or aerial investigation. The conference was held 
at  St. Petersburg, August 29-September 3 ,  1904, in the rooms 
of the Imperial Academy of Sciences. 

After enumerating the papers read a t  the conference, De 
Quervain gives the following abstract of Professor Hergesell’s 
report on his kite work on the Atlantic Ocean. ThiH work, 
which was carried out on the yacht belonging to the Prince 
of Monaco, began in the middle of July 0i-T the coast of Portu- 
gal, and was extended southward to twenty nautical miles 
southwest of the Canaries. From the middle of August on- 
ward the work was prolonged in the direction of the Azores 
after Hergesell had left the yacht. The trade wind was blom- 
ing off the coast of Portugal, and increased in strength in 
proportion as the yacht moved southward. North of the 
Canaries there was a northeast wind of seven or eight meters 
per second. The trade wind diminished with altitude above 
sea level until it was inappreciable. The kites attained alti- 
tudes as high as 4500 meters. The following conditions were 
observed in the trade region: in the lowest strata of a few 
hundred meters thick the temperature diminished acliabatic- 
ally; then followed a sharp passage into a layer having an in- 
verse gradient, generally of the considerable thickness of a 
thousand meters, in which the temperature rose, and which 
was generally very dry, namely, relative humidity of 10 or 12 
per cent. Above this came another layer, with adiabatic tem- 
perature gradients, whose upper limit was not attainable, but 

which certainly extended to an altitude of 5000 meters. Ae 
the kite atwended, the wind backed from northeast to north- 
west and diminished to a very feeble movement in the inver- 
sion layer. A southwest wind, or anti-trade proper, was not 
observed in these kite ascensions up to 4500 metars. Pro- 
fessor Hergesell considers the westerly winds observed on the 
peak of Teneriffe as being of a local nature. As to the pres- 
ence of local winds, very interesting observations were made 
in the neighborhood of the Canary Islands. A general account 
of the results of this work will probably soon be published in 
the Comptes-Rendus, after presentation by the Prince of Mo- 
naco to the Academy of Sciences in Paris. The publication in 
extenso will be macle in Hergesell’s Beitriigen to the physics 
of the free atmosphere. 

The new edition of the International Cloud Atlas has now 
been provided for financially and the publication will be 
hastened. 

As to the organization of the international balloon work, 
the committee decided that not only should the monthly 
ascensions, on specified dates, continue as heretofore, but also 
that ascensions should be macle as frequently as possible on 
three consecutive clays during two months of 1905, namely, 
April and also the 29th, 30th, and 31st of August. These last 
dates mere chosen with reference to the great total ecIipse of 
the sun, which will occur on A’ugust 30, and on which occasion 
the Spanish Government desires that ascensions shall be made 
in Spain within the path of totality. The hour of the day for 
simultaneous international ascensions was postponed, since 
the newer meteorographs are so well protected against sun- 
shine that they give correct records of the temperature of the 
air, and insolation is not so much to be feared. The committee 


